Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Distribution of the lingual foramina in mandibular cortical bone in Koreans

´ëÇѱ¸°­¾Ç¾È¸é¿Ü°úÇÐȸÁö 2013³â 39±Ç 6È£ p.263 ~ 268
±è´ëÇö, Kim Moon-Yong, ±èöȯ,
¼Ò¼Ó »ó¼¼Á¤º¸
±è´ëÇö ( Kim Dae-Hyun ) - Dankook University College of Dentistry Department of Oral and Maxillofacial Surgery
 ( Kim Moon-Yong ) - Dankook University College of Dentistry Department of Oral and Maxillofacial Surgery
±èöȯ ( Kim Chul-Hwan ) - Dankook University College of Dentistry Department of Oral and Maxillofacial Surgery

Abstract


Objectives: The interforminal region, between the mandibular foramen, is known as a relatively safe area that is free of anatomic structures, such as inferior alveolar nerve, submandibular fossa, and lingual side of the mandible is occasionally neglected for its low clinical importance. Even in the case of a severely constricted alveolus, perforation of the lingual cortical bone had been intended. However, anterior extension of the inferior alveolar canal, important anatomic structure, such as concavity of lingual bone, lingual foramina, and lingual canal, has recently been reported through various studies, and untypical bleeding by perforation of the lingual plate on implantation has also been reported. Therefore, in this study, we performed radiographic and statistical analysis on distribution and appearance frequencies of the lingual foramina that causes perforation of the mandibular lingual cortical bone to prevent complications, such as untypical bleeding, during surgical procedure.

Materials and Methods: We measured the horizontal length from a midline of the mandible to the lingual foramina, as well as the horizontal length from the alveolar crest to the lingual foramina and from the lingual foramina to the mandibular border by multi-detector computed tomography of 187 patients, who visited Dankook University Dental Hospital for various reasons from January 1, 2008 to August 31, 2012.

Results: From a total of 187 human mandibles, 110 (58.8%) mandibles had lingual foramina; 39 (20.9%) had bilateral lingual foramen; 34 (18.2%) had the only left lingual foramen; and 37 (19.8%) had the only right lingual foramen.

Conclusion: When there is consistent bleeding during a surgical procedure, clinicians must consider damages on the branches of the sublingual artery, which penetrate the lingual foramina. Also, when there is a lingual foramina larger than 1 mm in diameter on a pre-implantation computed tomography, clinicians must beware of vessel damage. In order to prevent these complications and progress with a safe surgical procedure, a thorough radiographic examination before the surgery is indispensable. Further, clinicians should retract lingual flap definitely to confirm the shape of the lingual bone and existence of the lingual foramina.

Å°¿öµå

Mandible; Dental implant; Computed tomography; Hemorrhage; Trigeminal nerve injuries

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

   

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed